If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-78x+80=0
a = 10; b = -78; c = +80;
Δ = b2-4ac
Δ = -782-4·10·80
Δ = 2884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2884}=\sqrt{4*721}=\sqrt{4}*\sqrt{721}=2\sqrt{721}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{721}}{2*10}=\frac{78-2\sqrt{721}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{721}}{2*10}=\frac{78+2\sqrt{721}}{20} $
| 5+55x=44x-9 | | X/2+12+2x-14+x=180 | | x=1+5/7 | | 5x+2x-20+8=0 | | 0=2(-8t^2+15 | | x=321000^(2/7) | | y+4/5=1/6 | | -1/6r-5=38 | | 5x+8=20-2x | | 2x+44=-18-2x | | 5x+8=020-2x | | 7n-1=434 | | -9.8=v/4-3.4 | | 3x-15=6x+8= | | 4z/7+5=-6 | | 8(4w+5)/3=-9 | | 28-6p=0 | | 3-6=9-6a | | 32w+40=-9 | | 8+2p=0 | | -14t+-63=-147 | | 5f-20=20 | | x/7+7=-6 | | -16x^2+31x+5=19 | | -10s+-50=-46 | | 3+7x=-3x | | -c-6=-2 | | 6+-2x=-8 | | F(x)=x^2+4x-21=0 | | 4n+20=60 | | 5x+2+7x+4=15x-17 | | 10y+22=6y+30 |